metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Christian Näther* and Andreas Beck

Institut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Olshausenstraße 40, D-24098 Kiel, Germany

Correspondence e-mail: cnaether@ac.uni-kiel.de

Key indicators

Single-crystal X-ray study T = 170 KMean $\sigma(\text{C-C}) = 0.003 \text{ Å}$ R factor = 0.034 wR factor = 0.089 Data-to-parameter ratio = 23.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Chlorobis(piperidine-*k*N)copper(I)

In the title compound, $[CuCl(C_{10}H_{22}N_2)]$, the Cu atom is connected to two N atoms of two crystallographically independent piperidine ligands and one Cl atom within a distorted trigonal-planar coordination. The complex molecules are stacked in the direction of the crystallographic *b* axis and are connected into chains *via* N-H···Cl hydrogen bonding along the crystallographic *c* axis. Received 14 June 2004 Accepted 22 June 2004 Online 26 June 2004

Comment

Recently, we have been interested in the synthesis, crystal structures and thermal properties of coordination polymers built up of copper(I) halides and N-donor ligands (Näther & Je β , 2002, 2003; Näther, Greve & Je β , 2002; Näther, Wriedt & *Je* β , 2002). During these investigations, we have synthesized and structurally characterized the ligand-rich title compound, (I). For copper(I) halides and piperidine, only a few structures are known. In the ligand-poorer compound copper(I) iodide–piperidine, Cu₄I₄ cubes are found, in which each Cu atom is coordinated by three I atoms and one N atom of a piperidine ligand (Schramm, 1978). In the copper(I) halide-rich compounds (CuX)₂–piperidine–triphenylphosphine (X = Cl, Br, I), (CuX)₂ dimers are found in which each Cu atom is coordinated by one piperidine and one triphenylphosphine ligand (Bowmaker *et al.*, 1994).

In (I), each Cu atom is coordinated by two N atoms of two crystallographically independent piperidine ligands and one Cl atom. The Cu–N bond lengths of 1.9959 (16) and 2.0045 (15) Å and the Cu–Cl bond length of 2.3187 (6) Å are in the range of those found in related structures retrieved from the Cambridge Structural Database (Version 1.6; Allen, 2002). The N–Cu–N and N–Cu–Cl angles are 135.37 (7), 116.68 (5) and 107.92 (5)°, and the Cu atoms show distorted trigonal-planar coordination.

In the crystal structure, discrete copper(I) chloride complexes are stacked in the direction of the crystallographic *b* axis and are connected by $N-H\cdots$ Cl hydrogen bonding. The Cl atom of one complex is connected to both N atoms of a neighbouring complex; the $N\cdots$ Cl distances are 3.2807 (17) and 3.31093 (18) Å, the Cl \cdots H distances 2.38 and 2.42 Å and

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The crystal structure of the title compound, with labelling and displacement ellipsoids drawn at the 50% probability level.

the N-H···Cl angles are 164 and 159°. From this arrangement, infinite chains result, which extend in the direction of the crystallographic c axis.

Experimental

The title compound was prepared by the reaction of 110.8 mg (0.824 mmol) CuCl and 1 ml (10.1 mmol) piperidine in a glass container. After about 7 d, large colourless crystals had grown, which were light-sensitive and had to be stored in the dark.

Crystal data

$[CuCl(C_{10}H_{22}N_2)]$	$D_x = 1.390 \text{ Mg m}^{-3}$
$M_r = 269.29$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 7942
a = 20.355(2) Å	reflections
b = 6.5407 (4) Å	$\theta = 10-23^{\circ}$
c = 9.7669 (11) Å	$\mu = 1.87 \text{ mm}^{-1}$
$\beta = 98.314 \ (13)^{\circ}$	T = 170 (2) K
$V = 1286.7 (2) \text{ Å}^3$	Block, colourless
Z = 4	$0.30 \times 0.18 \times 0.07 \ \mathrm{mm}$
Data collection	
Stoe IPDS diffractometer	2373 reflections with $I > 2\sigma(I)$
φ scans	$R_{\rm int} = 0.033$
Absorption correction: numerical	$\theta_{\rm max} = 27.9^{\circ}$
(X-SHAPE; Stoe & Cie, 1998)	$h = -26 \rightarrow 26$
$T_{\min} = 0.670, T_{\max} = 0.873$	$k = -8 \rightarrow 8$
7942 measured reflections	$l = -12 \rightarrow 9$
3062 independent reflections	
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0611P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.034$	where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.089$	$(\Delta/\sigma)_{\rm max} = 0.001$
S = 0.97	$\Delta \rho_{\rm max} = 0.63 \ {\rm e} \ {\rm \AA}^{-3}$
3062 reflections	$\Delta \rho_{\rm min} = -0.48 \text{ e} \text{ Å}^{-3}$
128 parameters	Extinction correction: SHELXL97

Table 1

Selected geometric parameters (Å, °).

H-atom parameters constrained

Cu1-N1 Cu1-N11	1.9959 (16) 2.0045 (15)	Cu1-Cl1	2.3187 (6)
N1-Cu1-N11 N1-Cu1-Cl1	135.37 (7) 116.68 (5)	C1-N1-Cu1 C5-N1-Cu1	112.47 (11) 114.66 (13)
N11-Cu1-Cl1	107.92 (5)		

Extinction coefficient: 0.0148 (17)

H atoms were located in a difference map, but were positioned with idealized geometry (C–H = 0.99 Å and N–H = 0.93 Å) and

Figure 2

The crystal structure of the title compound, viewed along the crystallographic *b* axis. $N-H\cdots$ Cl hydrogen bonding is shown as dashed lines.

refined with fixed isotropic displacement parameters $[U_{iso}(H) = 1.2U_{eq}(C,N)]$, using a riding model.

Data collection: *IPDS Program Package* (Stoe & Cie, 1998); cell refinement: *IPDS Program Package*; data reduction: *IPDS Program Package*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997; program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *XP* in *SHELXTL* (Bruker, 1998); software used to prepare material for publication: *CIFTAB* in *SHELXTL*.

This work is supported by the state of Schleswig-Holstein. We are very thankful to Professor Dr Wolfgang Bensch for financial support and the opportunity to use his experimental equipment.

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Bowmaker, G. A., Hanna, J. V., Hart, R. D., Healy, P. C. & White, A. H. (1994).
- J. Chem. Soc. Dalton Trans. pp. 2621–2629. Bruker (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Näther, C., Greve, J. & Jeß, I. (2002). Solid State Sci. 4, 813–820.
- Näther, C. & Jeß, I. (2002). J. Solid State Chem. 169, 103-112.
- Näther, C. & Jeß, I. (2003). Inorg. Chem. 42, 2968-2976.
- Näther, C., Wriedt, M. & Jeß, I. (2002). Z. Anorg. Allg. Chem. 628, 394–400. Schramm, V. (1978). Inorg. Chem. 17, 714–718.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Stoe & Cie (1998). *IPDS Program Package* (Version 2.89) and *X-SHAPE* (Version 1.03). Stoe & Cie, Darmstadt, Germany.